Giáo Dục

Cách học thuộc nhanh Bảng công thức lượng giác cực hay

Lượng giác là một phần trong chương trình toán học phổ thông. Bài toán liên quan tới lượng giác tương đối nhiều. Để giải các bài toán lượng giác các bạn cần nắm rõ và ghi nhớ được các công thức lượng giác. Ở bài viết này kienthucvui.vn giúp các bạn học thuộc nhanh bảng công thức lượng giác chi tiết từ mức cơ bản nhất.

1. Các giá trị lượng giác và các cung đặc biệt trong lượng giác

Cung đối nhau:

Bạn đang xem: Cách học thuộc nhanh Bảng công thức lượng giác cực hay

(cos ( – alpha ) = cos (alpha ))

(sin ( – alpha ) = – sin (alpha ))

(tan ( – alpha ) = – tan (alpha ))

(cot ( – alpha ) = – cot (alpha ))

Cung bù nhau:

(sin(pi-alpha )=sin(alpha ))

(cos (pi – alpha ) = -cos (alpha ))

(tan (pi – alpha ) = – tan (alpha ))

(cot (pi – alpha ) = – cot (alpha ))

Cung hơn kém:

(sin (alpha + pi ) = – sin (alpha ))

(cos (alpha + pi ) = – cos (alpha ))

(tan (alpha + pi ) = tan (alpha ))

(cot (alpha + pi ) = cot (alpha ))

– Cos đối, sin bù, phụ chéo, khác pi tan

– Cosin của hai góc đối bằng nhau

– Sin của hai góc bù nhau thì bằng nhau

– Tan của hai góc hơn kém pi thì bằng nhau

Cung phụ nhau:

(sin (frac{pi }{2} – alpha ) = cos (alpha ))

(cos (frac{pi }{2} – alpha ) = sin (alpha ))

(tan (frac{pi }{2} – alpha ) = cot (alpha ))

(cot (frac{pi }{2} – alpha ) = tan (alpha ))

Phụ chéo là 2 góc phụ nhau thì:

Sin góc này = cos góc kia

Tan góc này = cotag góc kia

Cung hơn kém  (frac{pi }{2}):

(sin (alpha + frac{pi }{2}) = cos (alpha ))

(cos (alpha + frac{pi }{2}) = – sin (alpha ))

(tan (alpha + frac{pi }{2}) = – cot (alpha ))

(cot (alpha + frac{pi }{2}) = – tan (alpha ))

Cung hơn kém nửa pi

2. Công thức lượng giác cơ bản

({sin ^2}x + {cos ^2}x = 1) (tan x = frac{{sin x}}{{cos x}})
(frac{1}{{{{sin }^2}x}} = 1 + {cot ^2}x) (tan x.cot x = 1)
(frac{1}{{{{cos }^2}x}} = 1 + {tan ^2}x) (cot x = frac{{cos x}}{{sin x}} = 1 + {tan ^2}x)

3. Công thức nghiệm của phương trình lượng giác

Công thức nghiệm của phương trình lượng giác

4. Công thức cộng trong lượng giác

sin(a + b) = sina.cosb + cosa.sinb

sin(a – b) = sina.cosb + cosa.sinb

cos(a + b) = cosa.cosb – sina.sinb

cos(a – b) = cosa.cosb + sina.sinb

Cos thì cos cos sin sin

Sin thì sin cos cos sin rõ ràng

Cos thì đổi dấu hỡi nàng

Sin thì giữ dấu xin chàng nhớ cho!

(tan (a + b) = frac{{tan a + tan b}}{{1 – tan a.tan b}})

(tan (a – b) = frac{{tan a – tan b}}{{1 + tan a.tan b}})

Tan 1 tổng hai tầng cao rộng

Trên tầng thượng ta cộng cùng tan

Dưới hạ tầng số 1 ngang tàn

Dám trừ đi tích tan tan oai hùng

Bạn chỉ cần nhớ công thức tổng hai tan còn hiệu hai tan chỉ cần đổi dấu.

5. Công thức nhân đôi trong lượng giác

Với công thức nhân đôi của sin và cos dựa vào công thức tính tổng của 2 sin hoặc 2 cos để đưa ra công thức:

a)  sin2a

Sin2a = sina.cosa + sina.cosa = 2 sina.cosa

=> sin2a = 2sina.cosa

Sin đôi bằng 2 sin.cos

b) cos2a

(cos 2a = cos a.cos a – sin a.sin a = {cos ^2}a – {sin ^2}a)

mà ta có: ({cos ^2}a + {sin ^2}a = 1 Rightarrow {cos ^2}a = 1 – {sin ^2}a Rightarrow cos 2a = 1 – 2{sin ^2}a)

Tương tự (cos 2a = 2{cos ^2}a = 1)

Vậy ta sẽ có: (cos 2a = {cos ^2}a – {sin ^2}a = 1 – 2{sin ^2}a = 2{cos ^2}a – 1)

Cos đôi bằng bình cos trừ bình sin

Hoặc bằng 1 trừ hai lần bình sin

Hoặc bằng 2 lần bình cos trừ 1.

Nếu quên các bạn dựa vào công thức tính tổng 2 cos hoặc 2sin để đưa ra công thức nhân đôi nhé. Với giá trị góc a+b được thay bằng a+a.

c) tan2a

(tan 2a = frac{{2tan a}}{{1 – {{tan }^2}a}})

Tan đôi ta lấy đôi tan chia 1 trừ lại bình tan ra liền.

6. Công thức hạ bậc trong lượng giác

a) sin2a, cos2a

Dựa vào công thức nhân đôi bạn có thể suy ra được giá trị sin2a, cos2a trong lượng giác:

Ví dụ để tính sin2a ta dựa vào công thức:

(cos 2a = 1 – 2{sin ^2}a Rightarrow {sin ^2}a = frac{{1 – cos 2a}}{2})

Tương tự ta có:

({cos ^2}a = frac{{cos 2a + 1}}{2})

b) tan2a

Tương tự để tính tan2a dựa vào công thức nhân đôi của tan:

(tan 2a = frac{{2tan a}}{{1 – {{tan }^2}a}} Rightarrow 1 – {tan ^2}a = frac{{2tan a}}{{tan 2a}} Rightarrow {tan ^2}a = frac{{tan 2a – 2tan a}}{{tan 2a}})

7. Công thức nhân ba trong lượng giác

(sin 3a = 3sin a – 4{sin ^3}a)

(cos 3a = 4{cos ^3}a – 3cos a)

Nhân 3 một góc bất kì

Sin thì 3, 4 cos thì 4, 3

Dấu trừ đặt giữa đôi ta

Thêm 3 chỗ 4 thế là OK

Các bạn chú ý thêm 3 chỗ 4 tức vị trị có hệ số là 4 sẽ có giá trị mũ 3.

8. Tổng thành tích trong lượng giác

(cos a + cos b = 2cos frac{{a + b}}{2}cos frac{{a – b}}{2})

Cos cộng cos bằng 2 cos cos

(cos a – cos b = – 2sin frac{{a + b}}{2}sin frac{{a – b}}{2})

Cos trừ cos bằng trừ 2 sin sin

(sin a + sin b = 2sin frac{{a + b}}{2}cos frac{{a – b}}{2})

Sin cộng sin bằng 2 sin cos

(sin a – sin b = 2cos frac{{a + b}}{2}sin frac{{a – b}}{2})

Sin trừ sin bằng 2 cos sin

Chú ý nửa tổng trước, nửa hiệu sau

(tan a + tan b = frac{{sin (a + b)}}{{cos a.cos b}})

Tan mình cộng với tan ta bằng sin hai đứa chia cos ta cos mình.

(tan a – tan b = frac{{sin (a – b)}}{{cos a.cos b}})

Tình mình hiệu với tình ta bằng sin hiệu chúng chia cos ta cos mình.

9. Tích thành tổng trong lượng giác

(cos a.cos b = frac{1}{2}[cos (a + b) + cos (a – b)])

Cos nhân cos bằng nửa cos cộng, cộng cos trừ

(sin a.sin b = frac{1}{2}[cos (a – b) – cos (a + b)])

Sin nhân sin bằng nửa cos trừ, trừ cos cộng

(sin a.cos b = frac{1}{2}[sin (a + b) + sin (a – b)])

Sin nhân cos bằng nửa sin cộng, cộng sin trừ.

Trên đây là cách học thuộc nhanh bảng công thức lượng giác trong toán học. Hy vọng giúp các bạn học tốt và hiệu quả hơn. Chúc các bạn thành công!

Trả lời

Email của bạn sẽ không được hiển thị công khai. Các trường bắt buộc được đánh dấu *

Back to top button